Three-Dimensional View Helps Laser in Building New Molecules

In many ways, traditional chemical synthesis is similar to cooking. To alter the final product, you can change the ingredients or their ratio, change the method of mixing ingredients, or change the temperature or pressure of the environment of the ingredients.

Like an accomplished chef, chemists have become very skilled at the manipulation of these parameters to produce many of the products that make our lives better. But there are some chemical reactions that resist these methods and, as a result, researchers are continually looking for new techniques to apply. In particular, laser-based chemistry has been a goal for scientists since the invention of the laser in the 1960's. Applying a laser pulse of the correct color and duration to a molecule could, in principle, inject just the right amount of energy to modify a specific chemical bond and change the molecule into a more desirable configuration. In this sense, the laser can be thought of as a new type of reagent that drives a chemical reaction. 

In practice, even a single molecule is a complicated system and finding the correct laser pulse characteristics to influence molecules is difficult. In addition, sophisticated laser pulse shaping devices can produce a nearly infinite number of pulse shapes, making a systematic search for the correct laser-molecule solution daunting. 

A proven method for approaching this problem is to use experimental feedback to guide an adaptive search of the possible laser pulses. As in natural selection, laser pulses that provide a better outcome are given an increased chance to survive and have their characteristics contribute to the tailored pulse that ultimately produces the desired outcome. Such a method, however, is only as good as the feedback that drives it. 

In an article published this week in the journal Nature Communications, researchers from Augustana, Kansas State University (KSU), the Max Planck Institute for Quantum Optics (MPQ) and the Ludwig Maximilian University (LMU) in Munich, Germany, have reported an improved feedback technique. By imaging the dissociating molecule in three dimensions, a laser pulse can be optimized to drive the molecule to a very specific final state. This image-based technique can complement feedback methods that depend on optical spectroscopy. Furthermore, the researchers were able to use the dissociation images to guide theoretical work that revealed how the laser pulse was able to control the molecule, in this case, driving acetylene ions from the normal HCCH configuration to the unusual HHCC configuration.  

Building on the initial work done at MPQ, Augustana students Chris Rallis ’11, Bethany Jochim ’11 and Phillip Andrews developed a method for converting the image into feedback quickly enough to be useful in the experiment. They then developed a system of computer control linking the entire experiment, as well as refining image–analysis techniques, to evaluate the experimental data. Once this was accomplished, the Augustana group traveled to the J.R. Macdonald Laboratory (JRML) – a state-of-the-art ultrafast laser facility located at KSU – to conduct the experiment as part of the long-standing Augustana-KSU collaboration. 

“The experiment shows that improved feedback, provided by multi-dimensional imaging, enhances both our abilities to control chemical reactions and the physical insight that can be gained," said Matthias Kling, research group leader at MPQ and assistant professor at KSU at the time the studies were conducted. 

“The new methodology provides new possibilities for the control of more complex systems including larger molecules, clusters, and nanoparticles. Multi-dimensional data provide stricter limitations for theoretical modeling and will help to improve our models,” said Regina de Vivie-Riedle, professor at LMU and leader of the group that performed the theory.

“The ability of these undergraduate students to provide a significant contribution to a problem at the forefront of the field demonstrates, once again, the excellent students and impressive opportunities we have here at Augustana,” said Eric Wells, associate professor of physics. “The educational benefits of undergraduate research are well known, but the work done by Chris, Bethany and Phillip and the rest of our wonderful colleagues reminds us not to overlook the scientific outcomes of the activities we do here.”

The Augustana–KSU collaboration has been successful in giving Augustana undergraduates an opportunity to work in a world-class lab like JRML. Several of the Augustana undergraduates participating in the research have gone on to be excellent students in the Kansas State graduate program, including Fulbright Scholar Nora (Johnson) Kling '05, who is receiving her Ph.D. in December, and current Ph.D. student Bethany Jochim '11, recipient of a prestigious Department of Energy fellowship. Both graduate students are in the group of Itzik Ben-Itzhak, JRML director.

“This project was the focus of Eric Wells’s sabbatical research at JRML a couple of years ago, and it serves as a model for research university ‒ liberal arts college collaboration," Ben-Itzhak said. "Both institutions benefit greatly from the partnership.” 

The next group of Augustana undergraduate students is already working on future experiments. 

Augustana College personnel and equipment were funded by National Science Foundation Grant No. 0969687 and National Science Foundation/EPSCoR Grant No. 0903804. KSU operations and personnel were supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. Additional funding was provided by support by the German Research Foundation via the Cluster of Excellence: “Munich Center for Advanced Photonics (MAP)” and via the DFG grants Kl-1439/2 and Kl-1439/3.